
Lloyd Moore, President

Lloyd@CyberData-Robotics.com

www.CyberData-Robotics.com

Northwest C++ Users Group, June 18, 2014

Appropriate Use of This Presentation

Causes of Failures

Watchdogs

Memory Techniques

“Safer” Coding Practices

Safe Shutdown Practices

Summary

Overview

This presentation is intended to fill a “middle region” between normal
software development practices and formal high reliability specifications
such as: MISRA, DO-178B, PCI-DSS, IEC 62304 and many others.

IF THE PROJECT YOU ARE WORKING ON IS SUBJECT TO FORMAL
RELIABILITY GUIDELINES AND/OR SPECIFICATIONS THIS
PRESENTATION IS NOT FOR YOU – FOLLOW THE APPROPERATE
GUIDELINES TO THE LETTER!

Ok if you are still reading then what is this presentation about? The above
guidelines do not apply to every case and are too “heavy” for many projects.
This presentation will cover techniques that can be used as needed to make
a project better in terms of reliability, but without going so far as to increase
the development cost of the project.

Appropriate Use of this Presentation

• Software bugs!!!

• The program does exactly what you said to do, just not what you intended to do!

• Electrical and environmental noise

• Both noisy power lines and stray induced magnetic fields can alter system state

• ESD (static electricity) can alter memory and register contents randomly

• Operator abuses

• They did WHAT?!?!?!?!?!?!?!?!?

• Resource limitations

• Memory fragmentation, unexpectedly large inputs, unexpectedly long times

• Failures in other parts of the system

• Mechanical changes and/or failures

• Component failures which cascade, but do not fully disable the system

• Networking and communications issues

Causes of Failures

• Set the compiler to the most sensitive warning level, and ensure the code
builds with ZERO warnings

• Use of pragmas to clear warnings is VERY debatable

• Use “safe” libraries

• No “naked” pointers

• Use APIs with length checking to avoid buffer overruns

• Have an established development and test process

• Use revision control, defect tracking, and whatever else you believe is a “best practice”

• Do code reviews on ALL code – builds team understanding and finds bugs early

• Unit test coverage should be 100% of critical code and as much of non-critical code as
management will afford you

• When there is a failure do a “root cause” analysis and update deficient processes

• The key is to have SOMETHING in place to which improvements can be made over time

This slide is NOT complete as there are MANY talks and debates covering these
topics!

The Basics

General Definition: Maintain surveillance over (person, activity, situation)

In our case refers to an independent piece of hardware which monitors the
desired process and either shuts down or resets the desired process if some
condition is not met.

Most common form is the Watchdog Timer, which is a dedicated piece of
hardware which will reset the main processor if it does not see a specific
activity happen within a specified time interval.

The activity is generally toggling an I/O line or writing one or more values to
specific registers.

Two general forms of this: “on chip” and “off chip” – advantages and
disadvantages to both and some feel quite strongly over which is better!

Desktop PC motherboards can also be purchased with watchdog hardware!

Watchdogs

Single Stage Watchdog:

• Must toggle a line or write a specific value to a location every X mS to reset
the watchdog timer

• If the watchdog reset event does not happen the watchdog resets the system
/ main processor

Windowed Watchdog:

• Must reset every X mS but not more often then every Y mS

• Protects against more cases than Single Stage Watchdog

Multi-stage Watchdog:

• Must toggle a line high then low, toggle multiple lines or write multiple
specific values to specific locations at some predefined time interval(s)

• Specifics vary from device to device

• Key is that you can ensure multiple locations in your code are executing in the
desired order

Watchdog Behavior

void main()
{
 initialize_system();
 while(1)
 {
 read_sensors();
 reset_watchdog();
 write_outputs();
 sleep_until_next_cycle();
 }
}

Typical Watchdog Program Pattern

General idea is that the watchdog gets reset once per main loop, will want the time
out of the watchdog to be barely longer than the longest execution time of the main
loop.

If using a multi-stage watchdog can position one call just before read_sensors() and
another call just before write_outputs() – now you can verify that the sensors were
read before the outputs were written.

DO NOT put watch dog resets into interrupt calls unless the only thing you
care about is verifying that the interrupt is still running!

On-chip watchdogs are typically disabled when in debugging mode, off-chip
watchdogs are not. Typical issue is you connect the debugger, hit a break
point and your system resets!

• Recommended practice – have the reset signal trace on the board
connected by default, but allow for a jumper location.

• On debug boards cut the trace and install the jumper, on production
boards leave the trace alone, and no jumper.

As your code grows and changes the length of time for the watchdog
timeout will also change – keep an eye on this as watchdog resets will look
like system crashes when you are developing!!!

Watchdog Gotchas!

Specific regions in memory that are protected by some form of “lockout”. These are typically
assisted by dedicated hardware but can also be emulated with a MMU.

Goal is to prevent accidental writes to some type of critical control.

Various forms of this:

• Location can only been written X clock cycles after reset

• Location can only been written once after reset

• Location is protected by some other location which must have a “key value” currently written
to it

• Note in this case you may NOT want to have the “key access” and “protected value” access in a common routine!

• Remember to always clear the “key value” when you are done updating!

Very commonly used to protect the on-chip watchdog timer, both in terms of configuring the
timer and writing to the reset location.

On chips with FPGA style resources you can also build your own protection to do specifically what
is needed.

Memory (I/O) Lockout Regions

In long running systems memory fragmentation becomes a big issue.

Many embedded systems run for years without a reboot and don’t have any
virtual memory system to “hide” fragmentation.

In these cases dynamic memory allocation becomes a source of instability!

Potential solutions:

• Use only static allocations – memory usage known at compile time

• For embedded microcontrollers actually a very desirable solution

• Use only automatic allocations – everything will end up on the stack

• Watch your stack space here – trades fragmentation for stack overflow

• Use dynamic memory allocation but only once at system startup

• If using C++ may want to disable new() and delete() to prevent “hidden” allocations

• Will also preclude using portions of the standard library!

• Use dedicated heap(s) and re-initialize it every so often

Memory Allocation Patterns

Data values themselves can change OUTSIDE OF program control!

Most of us are familiar with “overwrite” type problems, however in some
systems this isn’t the only issue. Memory can also be affected by:

• Bad memory locations

• Electrical noise

• Electrostatic discharge (special form of electrical noise)

• Environmental radiation

Note that this may not happen very often but it does happen! Electrostatic
discharge is a particularly common event in many areas, particularly in low
humidity conditions.

Some systems address this issue with ECC memory.

Data Integrity Issues

General principle is to keep critical data in a common data structure. Now
you can operate on the data as a set and this gives you some advantages:

• Data can be checked easily

• Sentinel values can be placed into the data structure and tested at regular
intervals – these are constant values through the life of the program

• Whole data structure can be checksum / CRC validated at key points

• Data structure can be “mirrored” and again validated at key points

These techniques work best when the program duty cycle is low, and
checking is done during the idle times.

Can also incorporate this into the watchdog reset routine such that the
watchdog is only reset if the data validation tests pass.

Data Validation Methods

Embedded microcontrollers will typically have extra memory which is not
used by the application. System reliability can be improved by properly
filling the memory with specific data:

• Unused RAM can be filled with a given pattern, and that pattern verified
as described in the data validation slide

• Particularly useful to do this just beyond the maximum expected stack

• Unused flash/ROM memory can be filled to trigger a reset or halt if the
program ever jumps out of the defined program region

• This is a processor dependent technique

• Fill memory with NOP instructions – will cause most processors to loop around to
start of memory just like a reset (beware of memory lockouts!)

• Fill memory with “reset” instructions – some processors have this others don’t

• Fill memory with jumps to a common safe halting or reset routine

• Note: Generally DO NOT want to fill memory with HALT instructions! If you just
halt you don’t know the system is in a “safe” state

Memory “Munging”

This is a technique where each major step of the program verifies that it was
called from the correct location.

The idea is to abort if any segment of code is called from an unexpected
path. By necessity this will make your program very rigid!

Typically involves some type of check at the beginning of each critical
routine. For a state machine this could simply be checking the prior state as
a precondition to executing the current state.

In the most general case this would be checking the call stack to make sure
the caller is one of an expected set.

State Tracking

The general idea here is to have specific boundaries in your program where
you fully check parameters being passed and/or overall system state. Very
similar in concept to threat modeling called “trust boundaries”.

1. Divide your application to specific layers and modules (should be doing
this anyway!)

2. Anytime flow crosses from one layer or module to another any data
being passed gets “sanity checked”

3. Extreme version of this is checking at the entry to EVERY function call –
may not be feasible due to knowledge or time limitations

Has the benefit of pushing “sanity checks” to the various module APIs of the
application where they are most easily accomplished and most easily
verified by code review to exist!

Validation Boundaries

Time calculations are a frequent source of “one time” errors, specifically:

• Leap year events

• End of year events

• The 49 day roll-over event (and similar) (32 bit int used as mS timer)

Recommendations:

• Always use full date / time values for calculations

• Use standard libraries for time manipulation, do not invent your own!

• Scale simple counters to have a lifetime of exceeding the maximum
possible lifetime of your program execution

• Battery powered devices, at least 2x expected battery life, assuming batteries come
out and force a reset

• Other devices just use a 64 bit int! Typically gives millions of years – good enough!

Time Calculations

Recursion

• Great for solving some types of problems but in general will lead to stack
overflows which are dependent on data values

Threading

• Again great for certain types of problems but getting threading correct is
HARD!!

• In many embedded applications threading can be simulated by the use of
interrupts

• Hardware guarantee of priority

• On some processors only one can be “in flight” at any time

Techniques to Avoid

This is a VERY application dependent question – and can go either way!

Error conditions will generally appear to happen at random times, therefore the
state of your system when an error conditions occurs should not be assumed.

• Motors could be on moving machinery

• Heating / cooling elements can be on

• Communication transaction could be in process

General recommendation here is to have ONE routine which places the system
into a “safe” condition for your application. This routine is called at startup and
also called anytime an error condition is detected. Note that this also means the
“safe” routine gets tested regularly!

Question of halting or resetting now becomes one of desired behavior – do you
want the process to continue without human intervention?

Can also use “scheduled resets” to improve system reliability.

To Halt or To Reset?????

• In real world application errors can come from sources other than
programming bugs.

• Make sure you are following all the “basics” of good coding practices

• Watchdog timers are the most common form of error detection used on
systems, however to get maximum benefit the watchdog needs to be
used correctly.

• Most non-bug related failures come as a result of environmental
influences corrupting memory and there are several techniques available
to detect this condition without having to resort to ECC memory.

• Knowing the expected flow of your program opens up further opportunity
for validation.

Summary

Questions?

