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Overview 



MANY definitions depending on the context of the problem and who you talk to!  

All generally refer to a condition where the answer is wrong if it is “late”  

Soft Real Time: Refers to a condition where you have a guarantee that you will 
get into some portion of the code in a bounded time (latency/delay).  

• Typically the ISR routine based on an hardware interrupt 

• Generally what is intended if an operating system is in use 

 

Hard Real Time: Refers to a condition where you have a very tight latency 
requirement, often on the same order as the machine cycle of the processor. 
Jitter may also be a requirement – cannot trigger too early either. 

• OS CANNOT be involved as it is just too complex 

• Typically used with smaller microcontrollers or programmable logic 

 

Real Time Problems are fundamentally different from other problems because 
the answer was typically correct at some point in time, just not this point in time. 

Definition of Real Time 



• Breakpoints stop the thread of the process in which they are contained 

• Only thread execution containing the breakpoint is guaranteed to be stopped, 
though typically the containing process is stopped as well.  

• Not all threads will stop at the same time in any case, particularly on multiple processors! 

• Other aspects of the system being debugged are typically NOT stopped 

• Hardware generating interrupts 

• Timers and real time clocks 

• Other processes which may be communicating over some port/pipe 

• Other processors in the system 

• The root of the problem is that part of the system you are debugging is 
stopped and part of the system continues to run. 

• ALL Real Time guarantees just went out the window! Any answers are now 
likely late and therefore, wrong! 

• Leads to inconsistent state of the overall system as some things continue 
running and others are stopped. 

Problems with Breakpoints 



In machine issues: 

• Buffer overflows / overwrites for shared memory buffers 

• Interrupts get missed and DMA status become corrupted 

• Timeout values expire without even being considered 

Between machine issues: 

• Communication port overflows – data being sent not removed/received 

• Have actually had this crash commercial USB drivers forcing PC reboot! 

• Upstream data sources time out waiting for responses 

• Downstream data sinks may enter unexpected conditions 

• These are generally good test cases anyway as they are real world anyway – find em & fix em! 

Hardware / physical issues: 

• Motors may continue to run!! (REALLY BAD!) 

• Your robot runs off the table and/or into a wall! (Bigger bots may go through a wall!!!) 

• Processes that are being controlled may enter unsafe operating conditions.  

• Heater may continue to heat once desired temperature is reached 

• Also really good to simulate as they could happen in production – fix any safety issues!! 

Some Real World Implications 



• This is what most developers do when faced with a breakpoint issue 

• Advantages:  
• Quick, simple, common practice 

• Keeps the process running 

• Works in many cases 

• Disadvantages:  
• Still alters program timing, sometimes considerably – consider serial port debugging even 

at 115200 baud – 868+uS to send 10 chars 

• Needs some other resource to be activated which can radically alter system state 

• I/O stream – generally the fastest but will trigger other processes 

• Disk access – may or may not block based on buffering, other process activated 

• COM port – Physical port slow, virtual COM port radically alters USB environment 

• Even non-blocking calls will alter thread behavior and timing 

• Simply not fast enough for many real time applications! 

• In small embedded applications may not have needed resources available 

• May alter hardware interrupt patterns and possibly DMA usage 

• Tracepoints are basically breakpoints tied to printf() 

 

Well then just use printf() or similar! 



The practice of reserving a section of memory to write debugging 
information into. May be a linear array or circular buffer. 

• Advantages:  

• Much faster than printf() but will still take some time 

• Much less likely to alter gross thread behavior or other system state – new threads 
not spun up 

• Disadvantages: 

• Usually have to write your own, or at least mess with much more code than printf() 

• Data is hard to get at – still need to stop system at some point or transmit memory 

• At least you have the option of doing this outside a critical time window  

• Limited data storage, especially on a microcontroller (maybe a couple K) 

• May have to alter your memory map for a small device to allocate memory 

  

Memory Buffer Debugging 



Fundamentally EVERYTHING you do to the execution environment will 
somehow alter the program execution environment! 

• Normally not a big deal for general application development as resources are 
plenty and processors are fast! Also works for some soft real time issues.  

• For hard real time applications you are typically near the limits of the 
processor to start with 

• For embedded applications, resources are much more scarce 

• Race conditions are extremely sensitive to timing changes 

• Examples: 

• Program timing altered as program instructions and flow also altered 

• Resources that are not normally used being called into service 

• Program alignment in memory can be altered (PIC processors use paged memory) 

 

I call this the: Heisenberg Uncertainty Principle for Software 

The Real Issue 



What needs to be done is to add resources that ARE NOT part of the system 
we are debugging – at least as we intend to use it in production! 

 

Yes the added resources will each have their own impact on the system – 
current draw, line inductance, line capacitance, etc. These impacts will be 
small as compared to methods we have talked about so far. 

 

Furthermore if you are seeing problems introduced by these debugging 
methods it is an indication of something that may be marginal in the design 
anyway and should at least be investigated if not fixed outright. 

Getting around HUPfS 



I.C.E. stands for in-circuit emulator. This is a piece of hardware and software that 
is typically inserted between the processor and the rest of the board to 
accomplish debugging.  

 

 

 

 

 

 

Consists of a “pod” that holds or replaces the processor and a “chassis” that 
contains specialized debugging hardware, including a trace buffer.  

Trace buffer is a big chunk of memory that records some or all of the processor 
signals in real time. These can then be analyzed to determine program flow and 
variable values. 

 

I.C.E. and Trace Buffers 



Advantages: 

• TRUE real time debugging! (At least for microcontrollers) 

• In most cases has NO impact on executing program 

• Can read out data in real time while program is running 

Disadvantages: 

• Can be VERY expensive – start at about $1K and go up to over $20K! 

• Sometimes require a special “bondout chip” to access internal processor 
signals 

• Generally not usable for high speed processors as line inductance off the 
main board alters signal timing significantly 

• Often times making the physical connection is problematic or impossible 

Generally not used all that often today, but still available. 

More on the I.C.E. 



On Chip Debugging was developed to address the issues with ICE, in particular 
connectivity, bondout chips and cost. 

Places many of the functions of the ICE onto the die of the processor and 
connects to these resources with a special serial connection.  

Advantages: 

• Typically has no impact on running program 

• Comes integrated with the chip and the tool chain 

• Solves about 80% of the debugging issues 

• More complex implementations can also have a trace buffer and a serial wire 
debugging output 

Disadvantages: 

• Most have little support for real time debugging issues 

• Trace buffer, if present, is small 

• Serial wire debugging, if present, is typically limited to 1Mbps 

• Does raise the cost of the chip in production 

On Chip Debugging 



A protocol sniffer is a piece of hardware that sits between two 
communicating devices, or on a common bus, with the devices being 
debugged and captures the communication data. 

• WireShark (free!!) is likely the best known one of these, allowing you to 
monitor and record network communications in real time! (Hardware is 
an additional PC and switch with port mirroring) 

• Other products available for USB, RS-232, wireless, SPI, I2C, I2S, etc. 

 

Protocol Analyzers / Sniffers 



Advantages: 

• Free to low cost (<$1000) for many applications 

• Near ideal solution if you have a communication problem 

• Can capture in real, or near real time with NO impact on running programs 

Disadvantages: 

• Can sometimes be temperamental to use, each one seems to have it’s 
own quirks 

• Does impact the electrical signals – if these are marginal to start with it 
could create additional issues 

• In this case you need to solve these issues anyway, and it is better to detect them 
now before the product goes into production! 

• Generally dedicated to one particular protocol – may need a collection of 
these depending on what you are doing 

Protocol Analyzers / Sniffers 



• Logic analyzers record groups of digital signals at a fixed rate, and then 
make these signals available for viewing (8-64 channels typical) 

• Oscilloscopes plot voltage vs. time curves instead of just binary values, 
typically on fewer channels (2-4 channels typical) 

• Can also purchase “mixed signal” models that have both in one unit 

• Two “flavors” are typically available – standalone or USB 

• Newer models also have multiple protocol analyzers built in, and with 
some you can write your own.  

Logic Analyzers and Oscilloscopes 



Advantages: 

• Usually pretty cost effective, especially for USB models ($200 - $2500) 

• Zero to low impact on running program 

• May need to insert code to output debug values or states, toggle a bit to watch 

• Very flexible tool for debugging real time and hardware issues, 
particularly if there are protocol analyzers available 

• Most have very complex triggering modes to help manage the deluge of 
data you can get with them 

Disadvantages: 

• Can be a real pain to hook up! 

• Can be complicated to use, and trigger properly 

• High level information can be hard to interpret, particularly on a 
oscilloscope 

Logic Analyzers and Oscilloscopes 



Sample screen capture of a USB based logic analyzer showing two I2C 
captures and the resulting byte values from the I2C interpreter.  

Notice that the “N” at the end of the interpreted traces – indicates a NAK 
from the device, so something is clearly not correct here! 

The Wt: indicates a byte being written which should be 60 (decimal) – clearly 
getting interpreted as zero and NAK’d by the I2C slave as well. 

Logic Analyzer w. I2C Protocol 



This is a capture of the same four waveforms on an oscilloscope.  

Notice that the leading edge of each trace is curved instead of squared off. 
While the logic analyzer only captures digital levels, the oscilloscope 
captures analog levels allowing you to debug finer details of the 
communication. 

I2C Capture on an Oscilloscope 



1. Communications Issues 

a) Simply use one of the protocol monitors to capture the communications directly 

b) Timing information is also typically obtained here 

c) If you allow for “debug frames/packets” then you can send additional information 

2. Use simple “bit twiddling” to output state information and watch on 
scope or LA – use this much like you would a printf() statement 

a) Very common tactic is to toggle a I/O pin in software and record on scope  

b) Make sure this code is in the form of a macro or in-lined, do NOT use a function call 
here! 

c) Can also toggle two pins at different points to measure order or timing 

d) Can output a stream of state information to a port if available (8 bit port is great for 
this) 

e) Program flow can be traced by putting out numbers to a port and then capturing on 
a logic analyzer 

3. By knowing where your code is NOT sensitive to interruption you can 
often place debugging actions (breakpoints, debug code) in those areas 

 

Techniques 



• Most real time issues on a PC or “large” hardware involve 
communications with real world or another computer 

• Tap into and monitor this communication link 

• Check to see if the processor you are using has a debugging module built 
in with a trace buffer.  

• May need to use a special debugging package to access this 

• Place debugging instrumentation AFTER the “critical window” 

• May be able to stop program and then look at historical data such as data buffers or 
other program state to determine what happened during the “critical window” 

• Usually will have to restart the debugging session after one attempt but can move 
you forward 

• May be able to instrument or measure a “surrogate” to help determine 
timing 

• Power consumption is common here as peripherals spin up and down 

• RF emissions may change as radios go on and off (AM radio was used on the olden 
days – won’t likely help today!) 

More Techniques 



• Intermittent problems require special attention to ensure changes that 
you are seeing are not do simply to chance 

• Need to know your failure rate and track this as you make changes 

• Consider a case where you see a failure on 3 out of 10 trials:  

• Failure rate is 30% (3/10 or 0.30) 

• Success rate is 70% (1.00 – 0.30) 

• Now you make a fix, test again for 10 trials and see zero failures! Did this happen by 
chance????? 

• Compute the chance (probability) that you got 10 successes by chance: 

• Chance of success on one trial is 0.70 (70%), raise to the power of the number of 
trials 

• 0.70 ^ 10 = 0.028 or 2.8% chance you didn’t really fix the bug!!! 

• Can extend this method to measure impact of instrumentation and 
multiple fixes 

Intermittent Problems and Statistics 



General process: 

1. Determine the specifics needed to repeat the problem 

2. Determine the percentage of the time the problem occurs, and possibly a 
confidence level – yes you have to do math here! 

3. Add instrumentation (code and/or hardware) to begin investigating the 
problem 

4. Ensure that you HAVE NOT changed the result from step 2! If you have 
determine if you are still looking at the same issue and can continue. If there 
are any doubts find a different way to instrument! 

5. Enter a proposed fix for the problem and re-run step 2.  

6. Interpret the results from step 5. 
1. If you think you have solved the problem remove the instrumentation and test AGAIN! 

Then use the math from the previous slide to see if you fixed something by chance. 

2. If you have not solved the problem remove the fix attempt and try again! 

3. You may end up accumulating several fixes that need to be considered together – make 
these a SEPARATE trial, do NOT just start adding stuff until it works! 

 

Intermittent Problems and Statistics 



1. Use the right tool for the job! None of these solutions are one size fits all!  

2. If you have “hard real time” requirements partition the problem at design time to 
isolate those requirements accordingly. (No OS, no processor at all)  

3. Design for test 

a) Leave extra resources available in the develop design for debugging, may not have in 
production (memory, I/O, connectors, prototype area, extra UART) 

b) Have a modular design that can be instrumented between major components 

c) If possible provide a standard connector for hooking up a protocol analyzer, logic analyzer or 
scope 

4. Purchase instruments that are flexible and integrate with the PC 

5. Build the system up in layers and fix problems as soon as they are found to 
prevent interactions or having to “peel the onion” 

6. Use statistical methods to measure impact of instrumentation and fixes  

7. Be prepared to give up the “divide and conquer” debugging methodology, some 
real time problems by their nature require a holistic approach 

Best Practices 



1. Real time debugging requires a variety of techniques to address different 
types of issues 

1. Hard real time issue will require additional hardware to debug properly due to the 
Heisenberg Uncertainty Principle for Software 

2. Design your system to allow for test and debug 

3. The most complex issues will require both hardware and software 
approaches to debug effectively 

4. Some problems will require statistics to estimate actual results 

5. Every time you modify software be aware of the resources you are using 
– even if you don’t think it matters! (Ya it usually does!) 

 

Summary 



Questions? 


